

NGST

NEXT GENERATION SPACE TELESCOPE

SUPPORT SYSTEMS MODULE OFF-SITE @ STScI

Bernard D. Seery
NGST Systems Manager
May 9-10, 1996

NGST

NGST SSM* OFF-SITE AGENDA

DAY 1: The Information

	Top Level Science Drivers	Mather / Stockman	3:00 - 3:30
•	Top Level Systems Drivers	Seery	3:30 - 4:00
•	OTA Baseline Concept	Beaman	4:00 - 4:30
•	Science Instrument Module	Bely	4:30 - 5:00
•	Goals for the Off-site and Change	Seery	5:00 - 6:00
	to the Working Group		

^{*}Support Systems Module

NGST

NGST SSM* OFF-SITE AGENDA (CONT)

DAY 2: The Work

•	Candidate Operations Scenarios	Kalinowski	9:00 - 9:30
•	Working Session #1	Group	9:30 - 10:30
•	Break		10:30 - 10:45
•	Working Session #2	Group	10:45 - 12:30
•	Lunch		12:30 - 1:15
•	Working Session #3	Group	1:15 - 3:00
•	System Re-composition	Group	3:00 - 4:00

^{*}Support Systems Module

NGST

STEPS IN THE IPT DESIGN PROCESS

- 1. Acknowledge the science drivers which have been binned by levels (eg. Level 1, 2, 3, 4).
- Acknowledge those aspects of the observatory that are essentially a "given" (eg. L2, no EVA, ATLAS IIA).
- 3. Identify all of the major interfaces that the spacecraft team must service.
- 4. Identify and scope all of the major tasks that the spacecraft team must accomplish.
- 5. Identify and prioritize key design and technology drivers.
- 6. Identify top-level system requirements where there are none or they are ambiguous, say TBD.
- 7. Identify major trades and concept evaluation criteria.
- 8. Develop strawman end-to-end observatory functional concept.
- 9. Decompose strawman to the subsystem level and examine the trades and impacts.
- 10. Recompose to the systems level.

NGST

NGST CONCEPTUAL DESIGN STUDY PRODUCTS

- ONE POSSIBLE STRAWMAN OBSERVATORY DESIGN CONCEPT SUPPORTED BY A FEASIBILITY ESTIMATE
- ROM ESTIMATE OF RESOURCES
- A VALIDATED AND REFINED SET OF MISSION OBJECTIVES AND REQUIREMENTS
- A SET OF PRIORITIZED AND WEIGHTED CONCEPT EVALUATION CRITERIA
- TECHNICAL TALL POLES AND RISKS
- TECHNOLOGY DEVELOPMENT ROADMAP
- TECHNOLOGY RISK MITIGATION (VALIDATION) PROGRAM
- INTERIM AND FINAL REPORT DOCUMENT

NEXT GENERATION SPACE TELESCOPE NGST THE CONSTRAINTS

COST OF CONSTRUCTION: \$500M

SCHEDULE: PHASE B START IN '03 AND 3-YEAR OBSERVATORY

DEVELOPMENT LAUNCH IN '06

LAUNCH VEHICLE: 'MADE IN USA'

ALLOCATION COMES OUT OF THE PROJECTED LIFE CYCLE

COST OF \$900M

DRESSLER RECOMMENDATIONS FOR THE BASIS FOR THE SCIENCE MISSION
REQUIREMENTS

- ADVANCED TECHNOLOGY AND INNOVATIVE SYSTEMS DESIGN WILL ENABLE NGST
 - NOT TO MENTION CREATIVE MANAGEMENT TECHNIQUES

NGST

Top Level Budget Allocations*

COMPONENT	SIZE (m)	WEIGHT (kg)	COST (\$M)
ОТА	upper 8 (inc. taper)	1000	\$100
SIM	2	500	\$100
S/C	1	500	\$50
OPS			\$45
RESERVE		818	\$205
CONSTRUCTION SUBTOTAL	11	2818	500

^{*} Does Not Include Science Data Analysis or Technology Development

EVALUATION CRITERIA

- FLEXIBILITY
- ROBUSTNESS
- SIMPLICITY
- DESIGN MARGIN
- MEETS LEVEL 1 SCIENCE
 REQUIREMENTS. LEVEL 2? LEVEL 3?
- COST REALISM
- TECHNOLOGICAL READINESS

NGST

NGST OSM DESIGN DRIVERS

- TELESCOPE TEMPERATURE
- LAUNCH VEHICLE PAYLOAD CAPABILITY
- SHROUD CONFIGURATION
- INSTRUMENT SCIENCE DATA RATE
- GUIDANCE AND CONTROL STRATEGY
- CONTAMINATION AVOIDANCE
- DEGREE OF SPACECRAFT AUTONOMY
- OTA CONFIGURATION AND DEPLOYMENT STRATEGY
- COST
- SCHEDULE (TECHNOLOGY MATURITY)

NEXT GENERATION SPACE TELESCOPE NGST NGST RELIABILITY PHILOSOPHY

- FAULT AVOIDANCE, OR "DO IT RIGHT THE FIRST TIME," IS THE BEST WAY TO MAKE THE OBSERVATORY RELIABLE
 - AMPLE DESIGN MARGINS
 - APPROPRIATE APPLICATION OF HIGH REL PARTS WHERE NEEDED
 - TECHNOLOGY VALIDATION DEMONSTRATIONS IN THE APPROPRIATE ENVIRONMENT
 - QA BY THE COGNIZANT OR LEAD ENGINEER

NEXT GENERATION SPACE TELESCOPE NGST RELIABILITY PHILOSOPHY (CONT)

- FAULT TOLERANCES AT THE COMPONENT LEVEL OR LOWER WHERE REQUIRED;
 SINGLE STRING EVERYWHERE ELSE
 - LESS EXPENSIVE THAN AT THE SUBSYSTEM LEVEL

CAUSES OF FAILURES

ASSIGNED CAUSE

DESIGN	24.8%
ENVIRONMENT	21.4%
OPERATIONS	4.7%
RANDOM	
PARTS	16.3%

QUALITY 7.7%
OTHER 6.3%
UNKNOWN 18.9%

NASA

NEXT GENERATION SPACE TELESCOPE

NGST

NGST STRAWMAN OBSERVATORY CONCEPT

NGST IS AN 8-METER CLASS (7.2M EFFECTIVE; $40M^2$ COLLECTING AREA) DEPLOYABLE TELESCOPE, OPTIMIZED FOR THE 1-5 μ m SPECTRAL REGION, AND WITH 'BEST-EFFORT' SPECTRAL THROUGHPUT FROM 0.5-20 μ m. THE PRIMARY MIRROR WILL INCLUDE SOME LEVEL OF POSITION, TILT AND HIGHER ORDER WAVEFRONT CORRECTION. THE OTA FIRST ORDER DESIGN IS AS FOLLOWS:

• OPTICAL TELESCOPE ASSEMBLY CHARACTERISTICS

APERTURE	8.0m
LIGHT GATHERING POWER	7.2m
FOCAL RATIO	F/10
TELESCOPE IMAGE LOCATION	40cm INSIDE
MAXIMUM OBSERVATION RATIO	20%
FOCAL PLANE CURVATURE	2m RADIUS
PRIMARY-TO-SECONDARY DESCOPE	8.94m
PRIMARY MIRROR FOCAL RATIO	F/1.25
SECONDARY MIRROR FOCAL RATIO	F/1.1
SECONDARY MIRROR APERTURE	85cm
SECONDARY MIRROR MAGNIFICATION	8x
NO. OF DEPLOYABLE MIRROR SEGMENTS	8
DIAMETER OF CENTRAL MIRROR SEGMENT	3.4m
FIELD OF VIEW	5x5 ARC MIN
OPTICS TEMPERATURE	30-40K

NGST

NGST STRAWMAN

- OBSERVATORY SUPPORT MODULE (OSM) CHARACTERISTICS:
 - 'WARM' MODULE, INCLUDING THE SUNSHADE, SOLAR ARRAYS, AND RF ANTENNAS
 - COARSE POINTING USING XTE-TYPE WHEELS TO THE ARCMINUTE LEVEL
 - 3-AXIS TRACKERS TO CONTROL FINE ROLL, COARSE PITCH & YAW
 - FINE STEERING MIRROR POINTING TO THE 5 MAS LEVEL
 - GYROS, COARSE AND DIGITAL SUN SENSORS
 - MOMENTUM UNLOADING VIA JETS (ION OR GAS TBD)
 - FIXED SOLAR ARRAYS (POSSIBLE CANTED) ATTACHED TO SUNSHADE (TBD)
 - X-BAND HGA, OMNI S-BAND ANTENNAS
 - PASSIVE COOLING OF OPTICS AND INSB DETECTORS VIA INFLATABLE 2-SHIELD SUNSHADES

NGST

NGST MODEL SPECIFICATION

<u>PARAMETER</u>	SPECIFICATIONS	GOAL	<u>COMMENTS</u>
OPTICAL SYSTEM			
-COLLECTING AREA	>12m²	50m ²	EXPOSURE TIME PROPORTIONAL TO D-4
-OPTICAL QUALITY	D.L. AT 2μm		ASSUMES 8m APERTURE, 60-80 MAS FWHM
-WAVEFRONT ERROR	λ /14 rms		STREHL RATIO = 0.8 FOR λ = 2 μ m
-FIELD OF VIEW	>3' X 3'	4'x4'	
-ANGULAR RESOLUTION	0.06 "		CORRESPONDS TO HST LEVELS AT 2μ
-ALIGNMENT (STATIC)	≤ 20% LOSS OF		
	EFFICIENCY		AT EDGE OF FOV
-SENSITIVITY	1.4 nJy		M = 31AB, 10 ⁴ SEC EXPOSURE
-TEMPERATURE	< 70K	30K	$T = 600/ \lambda max$
-POINTING	10 mas		~0.1 λ_D AT λ max
-STRUCTURAL FIRST			
MODE	>30H _z	>50H _z	
-JITTER	0.007 "rms		

NGST

NGST MODEL SPECIFICATION (CONT)

<u>PARAMETER</u>	<u>SPECIFICATIONS</u>	<u>GOAL</u>	<u>COMMENTS</u>

OPTICAL SYSTEM

-CENTER OF MASS -

CENTER OF PRESSURE

OFFSET 11 cm 5 cm

-NOMINAL EXPOSURE 10⁴ SEC COMPOSED OF 1000 SEC SUBFRAMES

-SPACECRAFT THERMAL

ENVIRONMENT -10 TO +40°C

-ROLL REQUIREMENTS 1" 1δ VALUE

-GUIDE STARS MINIMUM OF 1

 $m^{Y} = 19$ 95% PROBABILITY

-MAXIMUM DYNAMIC

IMBALANCE TBD

-COORDINATE SYSTEM V1, V2, V3

-SCIENCE DATA TBD

VOLUME

-TID

NEXT GENERATION SPACE TELESCOPE

NGST

EOL, ASSUMED 2 EVENTS/YEAR

NGST MODEL SPECIFICATION (CONT)

<u>PARAMETER</u>	SPECIFICATIONS	GOAL	<u>COMMENTS</u>
OPTICAL SYSTEM			
-GALACTIC COSMIC			ON-BOARD COSMIC RAY
RAY FLUX	10 ⁻⁵ /PIXEL/SEC		REMOVAL BASELINED
-OPTICAL FIELD			
DISTORTION	TBD		
-BIT ERROR RATE	10 ⁻⁶	10 ⁻⁸	DOWNLINK
-SCIENCE DATA RATE	TBD	~1Mbps	ASSUME X2 DATA COMPRESSION AND CO-ADDING
-COMMAND UPLINK	>2 Kbps		
-AMBIENT RADIATION			
BKGRD	TBD		
-SOLAR RADIATION			
BKGRD	3 Krad PER EVENT		BASED ON SOLAR CYCLE 22

60 Krad

NEXT GENERATION SPACE TELESCOPE NGST MODEL SPECIFICATION (CONT)

NGST

PARAMETER SPECIFICATIONS GOAL COMMENTS

OPTICAL SYSTEM

-SPACECRAFT

CHARGING <10 VOLTS

-CONTAMINATION 100A 10A/yr X 10 YEARS

-REFLECTIVITY LOSS DUE

TO ICING 2%/yr

-OBSCURATION EOL PARTICLE

LEVEL OF 500

-CRUISE DURATION TO L2 TBD

-ORBIT ADJUST ∆v MINIMAL

-STATIONKEEPING Δv MINIMAL

-L2 ORBIT RADIUS $0.5 \le r \le 30^{\circ}$

-OBSERVATORY LIFE 10 YEARS

-INSTRUMENT BAY

TEMPERATURE <40K 30K

-SKY COVERAGE >20% >25%

-PITCH-YAW 5"